On the Edge-colouring of Split Graphs on the Edge-colouring of Split Graphs

نویسنده

  • Celina M. H. de Figueiredo
چکیده

We consider the following question: can split graphs with odd maximum degree be edge-coloured with maximum degree colours? We show that any odd maximum degree split graph can be transformed into a special split graph. For this special split graph, we were able to solve the question, in case the graph has a quasi-universal vertex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The edge tenacity of a split graph

The edge tenacity Te(G) of a graph G is dened as:Te(G) = min {[|X|+τ(G-X)]/[ω(G-X)-1]|X ⊆ E(G) and ω(G-X) > 1} where the minimum is taken over every edge-cutset X that separates G into ω(G - X) components, and by τ(G - X) we denote the order of a largest component of G. The objective of this paper is to determine this quantity for split graphs. Let G = (Z; I; E) be a noncomplete connected split...

متن کامل

A greedy method for edge-colouring odd maximum degree doubly chordal graphs

We describe a greedy vertex colouring method which can be used to colour optimally the edge set of certain chordal graphs. This new heuristic yields an exact edge-colouring algorithm for odd maximumdegree doubly chordal graphs. This method shows that any such graph G can be edge-coloured with maximum degree (G) colours, i.e., all these graphs are Class 1. In addition, this method gives a simple...

متن کامل

Rainbow Colouring of Split Graphs

A rainbow path in an edge coloured graph is a path in which no two edges are coloured the same. A rainbow colouring of a connected graph G is a colouring of the edges of G such that every pair of vertices in G is connected by at least one rainbow path. The minimum number of colours required to rainbow colour G is called its rainbow connection number. Between them, Chakraborty et al. [J. Comb. O...

متن کامل

Equitable neighbour-sum-distinguishing edge and total colourings

With any (not necessarily proper) edge k-colouring γ : E(G) −→ {1, . . . , k} of a graph G, one can associate a vertex colouring σγ given by σγ(v) = ∑ e∋v γ(e). A neighbour-sumdistinguishing edge k-colouring is an edge colouring whose associated vertex colouring is proper. The neighbour-sum-distinguishing index of a graph G is then the smallest k for which G admits a neighbour-sum-distinguishin...

متن کامل

Strong edge-colouring of sparse planar graphs

A strong edge-colouring of a graph is a proper edge-colouring where each colour class induces a matching. It is known that every planar graph with maximum degree∆ has a strong edge-colouring with at most 4∆ + 4 colours. We show that 3∆ + 1 colours suffice if the graph has girth 6, and 4∆ colours suffice if ∆ ≥ 7 or the girth is at least 5. In the last part of the paper, we raise some questions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996